

- 1º) Model Building -
- 2º) Theory : proving results theoretically -
- 3º) Critical Analysis : When theory fails -
- 4º) Computation and Simulation -
- 5º) Real World Implication +

Part I: The model

1) The classical Cramér-Lundberg Model.

$$U_t = u + ct - \sum_{i=1}^{N(t)} x_i$$

compound Poisson process.

Parameters:

U_t : The Surplus amount at time t .

u : the initial capital.

ct : the constant premium rate.

$N(t)$: the number of claim by time t .

x_i : size of claim i .

2) Assumptions:

* $N(t) \sim \text{Poisson}(\lambda)$.

i.e. claims are arriving according to Poisson with rate λ .

Why? \Rightarrow b/c Poisson Process is the only continuous-time process with independent, stationary increment and discrete jumps. Plus memoryless property makes calculation tractable.

* x_i are i.i.d. with distribution F (common choice for F :

with $E(x_i) = \mu < \infty$

* exponential

* Pareto

+ Gamma, log normal

* x_i and $N(t)$ are independent.

i.e.: claims are independent of each other.

3) Expected values:

$$E(x_i) = \mu \quad \text{and} \quad E(N(t)) = \lambda t$$

$$\text{So } E(U_t) = u + ct - \lambda t \mu = u + (c - \lambda \mu)t$$

Which gives the net profit condition: $c > \lambda \mu$.
otherwise if $c \leq \lambda \mu$ then certain ruin.

The ruin:

$$\tau = \inf \{t > 0 : u(t) < 0\}$$

i.e. the first time the surplus becomes negative
(if it never hit negative then $\tau = \infty$)

* The ultimate ruin probability is:

$$\psi(u) = P(\tau < \infty \mid u(0) = u) \rightarrow \begin{cases} \text{Probability of ruin} \\ \text{with a starting capital} \\ u. \end{cases}$$

so

$\lim_{u \rightarrow \infty} \psi(u) = 0$	i.e. as you increase the capital then you have a less probability of attaining ruin.
$\lim_{u \rightarrow 0} \psi(u) = 1$	if $c \leq \lambda \mu$.

Task:
How
How fast does $\psi(u) \rightarrow 0$ when $u \rightarrow 0$?
What role do parameters play (λ, μ, c, F)

\Rightarrow The Lundberg's Inequality:

Assuming the net-profit condition holds: i.e. $c > \lambda\mu$

And suppose there exist $R > 0$ that satisfy:

$$\lambda E[e^{Rx}] = \lambda + cR$$

Then $\psi(u) \leq C e^{-Ru}$

Where C is a constant depending on R .

This means:

- The ruin probability decays exponentially in initial capital
- R (called the adjustment coefficient): quantifies how safe the company is.
- Higher premium rate \rightarrow Larger $R \rightarrow$ Safer. (i.e. light-tail \Rightarrow Exponential safety)

\Rightarrow The surplus grows linearly but the claim jumps are rare enough that an exponential tail controls ruin risk.

Proof of the Lundberg's Inequality: (use Martingale and Optimal Stopping Theorem)

Given: $u(t) = u + ct - s(t)$ where $s(t) = \sum_{i=1}^{N(t)} x_i$

$$c > \lambda\mu$$

$$R > 0 \text{ satisfying: } \lambda E[e^{Rx}] = \lambda + cR$$

$$R u(t) \quad -\lambda t (E[e^{Rx}] - 1)$$

* Define: $M(t) = e^{R u(t)} \cdot e^{-\lambda t}$

this is a Martingale.

* Apply OST at τ : $E(M(\tau)) = M(0) = e^{R u}$

* At ruin $u(\tau) \leq 0 \Rightarrow e^{R u(\tau)} \leq 1$

Therefore $e^{R u} \geq \psi(u)$

The previous Lundberg's inequality

$\Phi(u) \leq e^{-Ru}$, where R is solution to $\lambda E[e^{Rx}] = \lambda + cR$)

assumes that $E[e^{Rx}] < \infty$ (is finite for some $R > 0$)

But when $E[e^{Rx}] = \infty$, then the proof for the Lundberg's inequality breaks. \Rightarrow We have a heavy-tailed distribution

\Rightarrow No adjustment coefficient exists.

\Rightarrow $M_b f$ does not exist

\Rightarrow Tails decay slower than exponentially. (Polynomial or slower)

Ex : Pareto distribution, log-Normal, etc.

Figure : exponential vs polynomial decay.

Figure : exponential decay dist. same u , but one is much higher $\Phi(u)$

exponential decay dist. Exponential, Gamma, Normal

Polynomial decay dist. Pareto, log-Normal.

Q: How much more capital is needed?

* Property catastrophe :

- Hurricane Katrina : \$41B in loss (single event)

- Pareto like distribution

* Light tailed : - the premium gradually offset claim outflow
- Ruin occurs via many shocks accumulating.

* Heavy tailed : Ruin happens bc of one giant claim.
= catastrophic event.