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Motivations

*September 2008: AIG needs a $85 Billons bailout? Why?

*Hurricane Katrina: Multiple Insurer went brankrupt

Questions:
When does the classical theory works and when does it fail? How much capital does it cost?




The Cramer-Lundberg Model

N(t)
Ult)=u+ct =), X;
1=1
Where:
U(t) : the Surplus funds the company has at time t
c*t: the constant premium

N(t): is the number of claim by time t.

X_i: the claim size of each claim.




Assumptions:

*N(t) ~ Poisson(2)

«X_i: are i.1.d with distribution F.

« Common example distribution F are: Exponantial, Gamma, Pareto, Normal, ...
*E[X;] = u and u < « i.e the mean is finite

*The net profit condition is met: (Taken from the Expected value of U(t) E[U(t)])
l.ec>Au




The Ruin Probability

Time of Ruin:
o T =inf{t > 0:U(t) < 0} (i.e the first time the surplus becomes negative)
If U(t) never hits negative, then t = o

The ruin probability

Y(u) =Pt < 0 |U0) =uw)
Which is the probability of ruin with a starting capital of u.
Intuitvely:

o lim Yy(u) =0

u—>0o

o lim Yy(u) =1ifc < Au

u—>0o




Lundberg's Inequality

Assumming the net profit condition hols, i.e. ¢ > Au

Suppose there exists R>0 that stisfy: 4 -+ E[efX] = A2+ ¢R

ThenP(u) < C - eR®* | where Cis some constant depending on R
We call R the adjustment coefficient

R quantifies how safe the company is.

The inequality means:

The ruin probability decays exponentially in initial capital

Higher premium rate -> Larger R -> Safer




Proof of the Lundberg’s inequality

Use Martingale and Optional Stopping Theorem
Given:

Ult) =u+ct — Zlivz(i)Xi

c> A\

R>0 that stisfy: 4 - E[e®X] = 2+ cR

Define: M(t) = eRU® x g=At(E[e**]-1)

Apply OST at 7 : E[M(7)] = M(0) = eR"
AtRuin:U(t) 0= efV™® <1

conclude Y(u) < C - eR




Problem with Lundberg’s Inequality

Y(u) <C - e where R>0 andis a solutionto 4 - E[e®X] = 2+ cR
Assumes that E[efX] is finite for some R > 0 (i.e E[e®X] < )

When E[e®X] = oo then we can’t prove the inequality.

This means:
> We have a heavy-tailed distribution
> No adjustment Coefficient R exists.
o MGF does not exists

o Tails decay slower than exponentially. (Polynomial or slower)

Example of when heavy tails occur: claims are Pareto distributed, or Log-Normal




-xponential vs Polynomial decays

Ruin Probability vs Initial Capital

100 —&— Exponential (Simulated)
1 -l Pareto (Simulated)
— = Lundberg Bound (Exponential)
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For each simulation run:
1. Initialize: U=u,t=0
2. Generate next claim arrival time:

T ~ Exponential(A)

3. Accumulate premiums until claim:

Simulation Uevsor
Algorithm:

4. Process claim:
Draw X ~ F (claim size)

Event-driven Ueu-X

5 .Check ruin:

I\/l O nte Ca r‘ O If U< 0 — STOP (ruin occurred)
Otherwise — Return to step 2

6. Repeat until t > T (time horizon)

Estimate: y(u) = (# ruined runs) / (total runs)




Sample Paths: Exponential vs Pareto Claims
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Sample Paths: Exponential vs Pareto

Exponential Claims (Light-Tailed) Pareto Claims (Heavy-Tailed)
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Simulation Results:

Ruin Probability vs Initial Capital

—8— Exponential (Simulated)
10%4 =~ Pareto (Simulated)
== Lundberg Bound (Exponential)
Initial Exponential Pareto
Capital Ruin Prob Ruin Prob
50 81.0% 79.8%
$50,000 22.8% 15.2% _
$5100,000 6.3% 4.8% 2 w07
$150,000 1.9% 1.8% 2
$200,000 0.53% 0.93% =
$250,000 0.13% 0.60% §
$300,000 0.06% 0.53% e
Key Observations: E
» Pattern: Ratio increases with capital 10-2
* At S100K: Pareto is 0.8x times riskier
» At $300K: Pareto is B8.8x times riskier
+ Exponential decay (blue) vs. polynomial decay (red)
Capital Requirements (1% ruin target):
Exponential: $183,094 102 . : . . ! ‘ :
Pareto: $195,882 0 50 100 150 200 250 300

Ratio: 1.07x Initial Capital u ($1000s)




Observation / Interpretation:

Exponential distribution, Validated the classical theory:
Exponential decay

Simulation matches Lundberg bound
Pareto Distribution:

Shows polynomial decay

No exponential bound exists

Capital requirement: Pareto needs higher requirement for 1% ruin probability.




Limitations

Simple Assumption;
- Pure Compound Process: No return on surplus,
- No risk Management: like re-insurance

- single tail type: Most time both light then sudden catastrophic heavy tails

- Parameter Certainty: in reality limited data makes a, A, ¢ hard to determine




Future works:

- Regime Switching: Light tail in normal then transition to heavy tails in time of crisis

- Optimal Reinsurance: transfer heavy tail risks, capital injections, etc

- Multi-line insurance: Multiple correlated portfolio
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