

Insurance Surplus Modeling with Poisson Process and Ruin Probability

JOSEPH PATRICK
RAOGNINIRINA

Motivations

- September 2008: AIG needs a \$85 Billions bailout? Why?
- Hurricane Katrina: Multiple Insurer went bankrupt

Questions:

When does the classical theory works and when does it fail? How much capital does it cost?

The Cramer-Lundberg Model

$$U(t) = u + ct - \sum_{i=1}^{N(t)} X_i$$

Where:

$U(t)$: the Surplus funds the company has at time t

$c*t$: the constant premium

$N(t)$: is the number of claim by time t .

X_i : the claim size of each claim.

Assumptions:

- $N(t) \sim \text{Poisson}(\lambda)$
- X_i : are i.i.d with distribution F .
 - Common example distribution F are: Exponential, Gamma, Pareto, Normal, ...
- $E[X_i] = \mu$ and $\mu < \infty$ i.e the mean is finite
- The net profit condition is met: (Taken from the Expected value of $U(t)$ $E[U(t)]$)
i.e $c > \lambda\mu$

The Ruin Probability

Time of Ruin:

- $\tau = \inf\{t > 0 : U(t) \leq 0\}$ (i.e the first time the surplus becomes negative)

If $U(t)$ never hits negative, then $\tau = \infty$

The ruin probability

$$\psi(u) = P(\tau < \infty | U(0) = u)$$

Which is the probability of ruin with a starting capital of u .

Intuitively:

- $\lim_{u \rightarrow \infty} \psi(u) = 0$
- $\lim_{u \rightarrow \infty} \psi(u) = 1$ if $c \leq \lambda\mu$

Lundberg's Inequality

Assumming the net profit condition hols, i.e. $c > \lambda\mu$

Suppose there exists $R>0$ that stisfy: $\lambda \cdot E[e^{RX}] = \lambda + cR$

Then $\psi(u) \leq C \cdot e^{Ru}$, where C is some constant depending on R

We call R the adjustment coefficient

R quantifies how safe the company is.

The inequality means:

The ruin probability decays exponentially in initial capital

Higher premium rate -> Larger R -> Safer

Proof of the Lundberg's inequality

Use Martingale and Optional Stopping Theorem

Given:

$$U(t) = u + ct - \sum_{i=1}^{N(t)} X_i$$

$$c > \lambda\mu$$

$R > 0$ that satisfy: $\lambda \cdot E[e^{RX}] = \lambda + cR$

Define: $M(t) = e^{RU(t)} * e^{-\lambda t(E[e^{RX}] - 1)}$

Apply OST at τ : $E[M(\tau)] = M(0) = e^{Ru}$

At Ruin: $U(\tau) \leq 0 \Rightarrow e^{R U(\tau)} \leq 1$

conclude $\psi(u) \leq C \cdot e^{Ru}$

Problem with Lundberg's Inequality

$\psi(u) \leq C \cdot e^{Ru}$ where $R > 0$ and is a solution to $\lambda \cdot E[e^{RX}] = \lambda + cR$

Assumes that $E[e^{RX}]$ is finite for some $R > 0$ (i.e $E[e^{RX}] < \infty$)

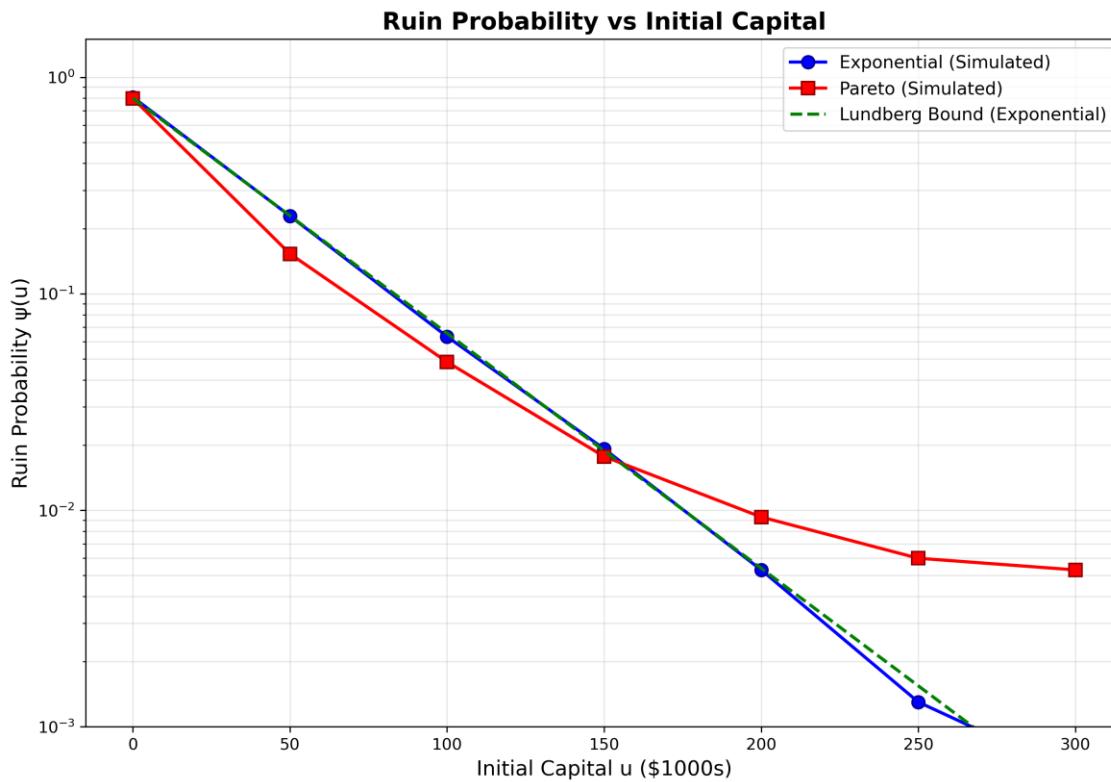
When $E[e^{RX}] = \infty$ then we can't prove the inequality.

This means:

- We have a heavy-tailed distribution
- No adjustment Coefficient R exists.
- MGF does not exists
- Tails decay slower than exponentially. (Polynomial or slower)

Example of when heavy tails occur: claims are Pareto distributed, or Log-Normal

Exponential vs Polynomial decays



Simulation Algorithm: Event-driven Monte Carlo

For each simulation run:

1. Initialize: $U = u, t = 0$

2. Generate next claim arrival time:

$$\tau \sim \text{Exponential}(\lambda)$$

3. Accumulate premiums until claim:

$$U \leftarrow U + c \cdot \tau$$

4. Process claim:

Draw $X \sim F$ (claim size)

$$U \leftarrow U - X$$

5 .Check ruin:

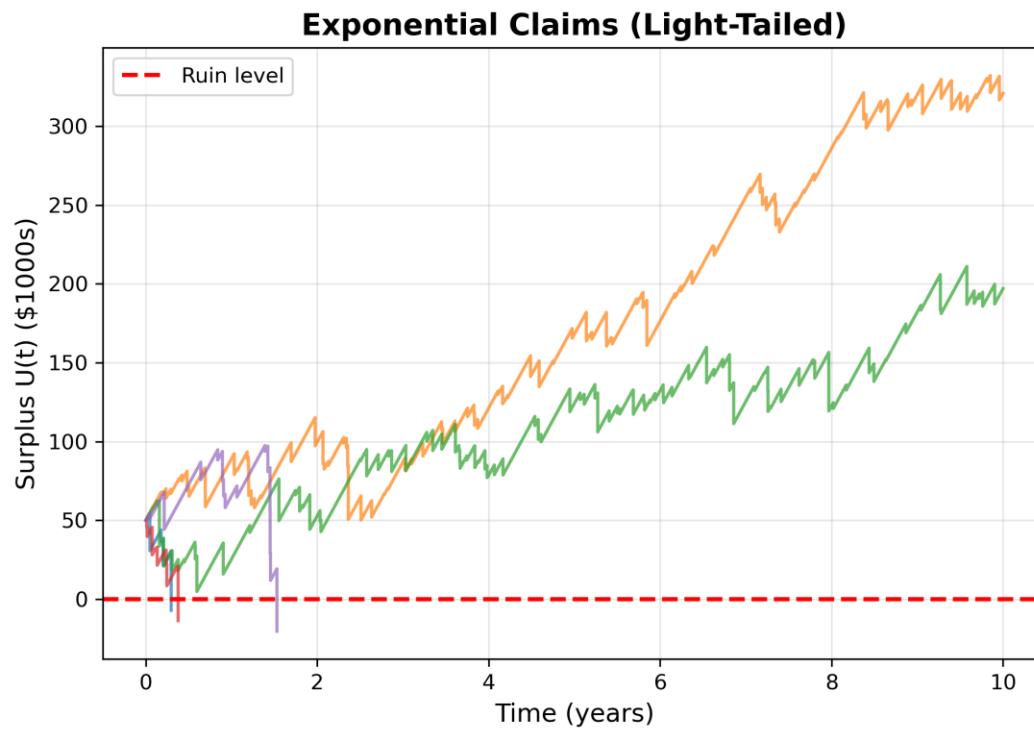
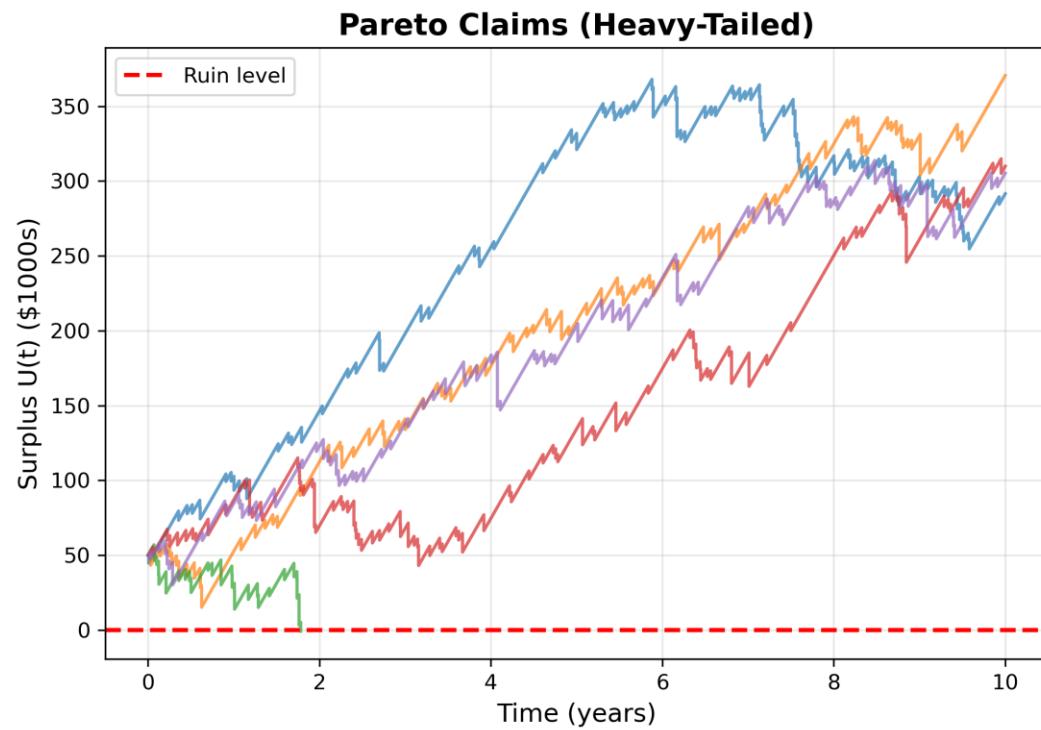
If $U < 0 \rightarrow$ STOP (ruin occurred)

Otherwise \rightarrow Return to step 2

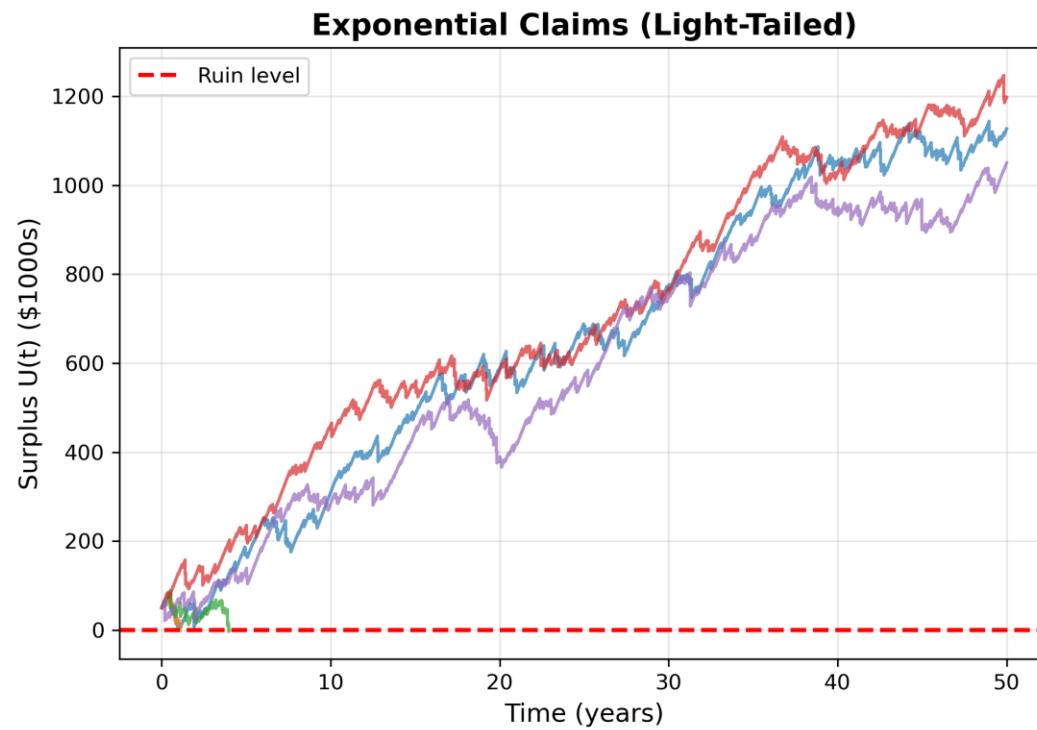
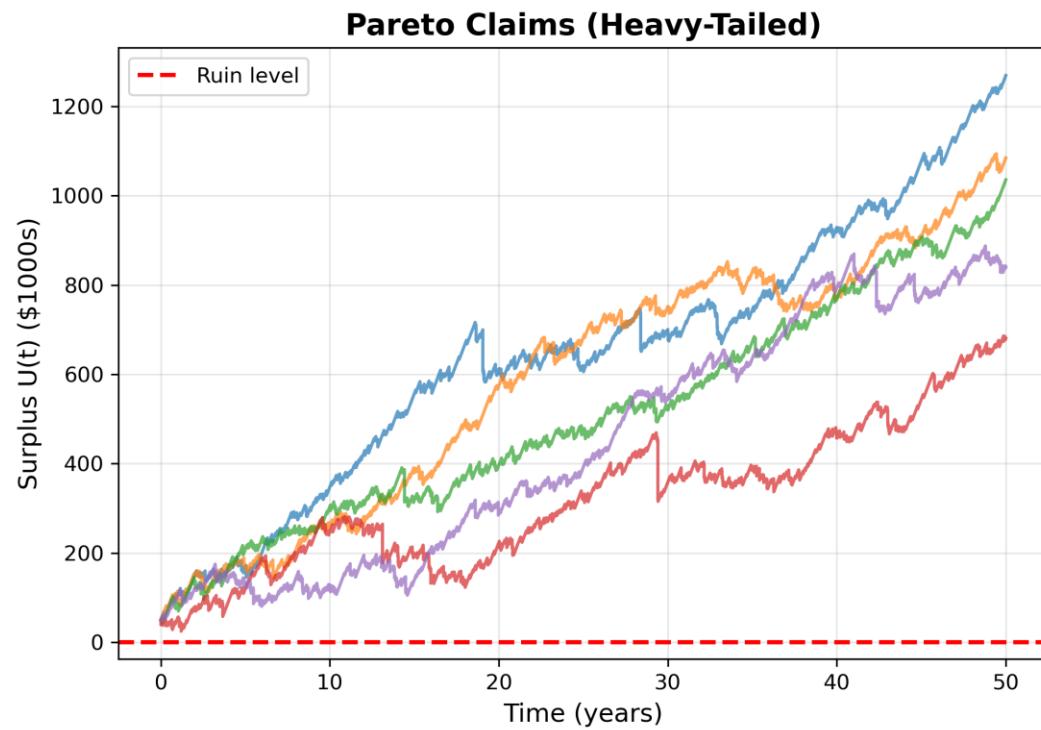
6. Repeat until $t \geq T$ (time horizon)

Estimate: $\psi(u) \approx (\# \text{ ruined runs}) / (\text{total runs})$

Sample Paths: Exponential vs Pareto Claims



Sample Paths: Exponential vs Pareto



Simulation Results:

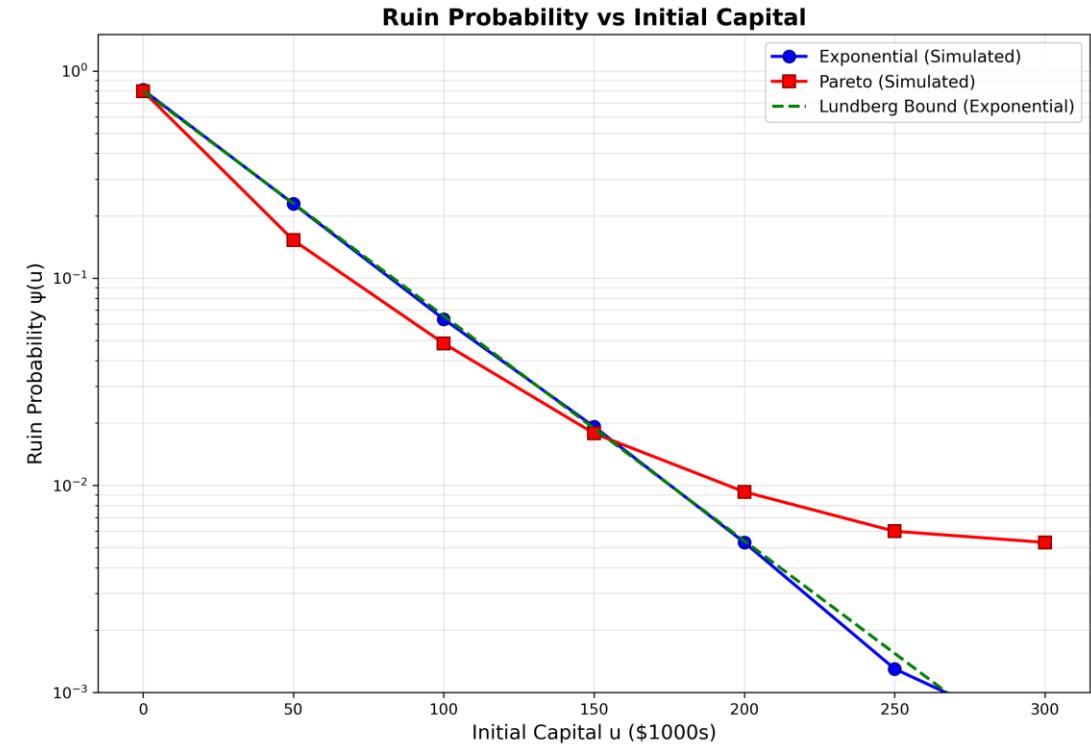
SIMULATION RESULTS SUMMARY			
Initial Capital	Exponential Ruin Prob	Pareto Ruin Prob	Ratio (P/E)
\$0	81.0%	79.8%	1.0x
\$50,000	22.8%	15.2%	0.7x
\$100,000	6.3%	4.8%	0.8x
\$150,000	1.9%	1.8%	0.9x
\$200,000	0.53%	0.93%	1.8x
\$250,000	0.13%	0.60%	4.6x
\$300,000	0.06%	0.53%	8.8x

Key Observations:

- Pattern: Ratio increases with capital
- At \$100K: Pareto is 0.8x times riskier
- At \$300K: Pareto is 8.8x times riskier
- Exponential decay (blue) vs. polynomial decay (red)

Capital Requirements (1% ruin target):

Exponential: \$183,094
Pareto: \$195,882
Ratio: 1.07x



Observation / Interpretation:

Exponential distribution, Validated the classical theory:

Exponential decay

Simulation matches Lundberg bound

Pareto Distribution:

Shows polynomial decay

No exponential bound exists

Capital requirement: Pareto needs higher requirement for 1% ruin probability.

Limitations

Simple Assumption;

- Pure Compound Process: No return on surplus,
- No risk Management: like re-insurance
- single tail type: Most time both light then sudden catastrophic heavy tails
- Parameter Certainty: in reality limited data makes α , λ , c hard to determine

Future works:

- Regime Switching: Light tail in normal then transition to heavy tails in time of crisis
- Optimal Reinsurance: transfer heavy tail risks, capital injections, etc
- Multi-line insurance: Multiple correlated portfolio

References

- Ross, S. M. (2014). *Introduction to Probability Models* (11th ed.). Academic Press.
- Tomita, Y., Miyagi, K., & Watanabe, K. (2022). Ruin probabilities under mixed Poisson processes.
- Aurzada, F. & Buck, M. (2020). Ruin probabilities with insurance and financial risks having temporarily negative capital.
- Barrera, M., Rojas, F., & Villaseñor, J. A. (2020).
On the ruin probability of a generalized Cramér–Lundberg model driven by mixed Poisson processes.
- Asmussen, S., & Albrecher, H. (2010). *Ruin Probabilities* (2nd ed.). World Scientific.
- Lundberg, F. (1903). *Approximations of the Probability Function*. Almqvist & Wiksell.
- Cramér, H. (1930). *On Collective Risk Theory*. Skandia Jubilee Volume.